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CALCULATION OF EFFECTIVE THERMAL RADIATION
ABSORPTION COEFFICIENT OF A CAVITY WITH
DIFFUSELY REFLECTING WALLS

S. B. Kiselev v UDC 536.3

The system of integral equations of radiation heat exchange in a closed cavity is solved nu-
merically.

One of the basic requirements of a calorimeter for radiant heat fluxes is the total absorption of all radia-
tion incident on its entrance opening, independently of the spectral composition and direction of the radiation.
The most effective method of increasing the absorption of radiation is the use of cavities of different configura-
tions to collect the radiation. The geometry of a cavity can be changed so as to make its radiation character-
istics approach those of a black body as closely as possible. The actual characteristics of the cavity can be de-
termined either experimentally or theoretically, but the experimental arrangements for determining the ab-
sorptance of a cavity are so complex that only the theoretical solution of this problem is practical.

The effective thermal radiation absorption coefficient of a cavity of any configuration is defined as the
ratio
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is the reflected heat, and
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is the incident heat. Here g¢j(r;) is an unknown function characterizing the flux density of effective radiation
from the i-th zone of the cavity surface (the subscript o refers to the Opemng), f; (rj) is a known function which
characterizes the self-radiation of the cavity surface.

In order to find the unknown function ¢;(rj), and consequently to determine the radiation characteristics
of the cavity, it is necessary to solve the radiation heat-exchange problem in a closed cavity. By using the gen-
eralized zonal method this problem is reduced to the solution of a system of integral equations of the form [1]
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where Aj = 1— ¢gj is the reflection coefficient of the i-th zone of the cavity surface; g; (r;), distribution of ther-
mal flux density or temperature over the i-th zone (specified in the boundary conditions}; Kij’ kernel of the in-
tegral equation, and is related to the elementary diffuse angular coefficient by the expression d Fgp i-dAj =

KijdAj. For the geometry of the system shown in Fig. 1 the quantity d FdAi-dAj is given by the expression

(nFyo)(nyryy) dA,.

dF g4, 44, =
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As shown in [2], solving Eq. (4) is equivalent to finding the extremum of the functional
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If the functions ¢,,..., ¢ are determined so as to make the functional (5) an extremum, they are also the solu~

tion of the system of integral equations (4). Since it is difficult fo find the exact solutions for the functions
QT .., PN(TN), we use the Ritz approximation method [3] in which each of the functions ¢j(x;) is represented
as a linear combination of M appropriately chosen functions Pim(ri):

V
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where the constants ¢cjyy (i=1,2,...,N; m=1,2, ..., M) are found from the condition
(N
o =0 (i=1,2,...,N,m=1,2, ..., M.
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This system contains MN algebraic equations with MN unknown coefficients. The accuracy of the solution ob-
tained can be increased by increasing the number of terms in expansion (6).

The method described is used to calculate the effective absorption coefficient of the cylindrically sym-
metric composite cavity shown in Fig. 2. Equations (4) are solved subject to the following assumptions and
boundary condition:

1) the quantities A; =X, = A3 = A do not depend on the wavelength or direction of the incident radiation;
2) radiation is reflected and emitted diffusely by the cavity walls;
3) fj(r;)=0, the self-radiation of the cavity walls is eliminated from the solution;

4) the opening is replaced by an ideal black surface with a uniformly distributed effective radiation flux
density;

Po(r) =1 (Ao =0, @o(re)=go(ro));
5) the basis functions in expansion (6) are chosen in the form
Yim (r) = 177, (8)
where I, =1y, [y=1r,, I3=1r3. The subscripts correspgnd to the numbers of the surface shown in Fig. 2,
Using the assumptions and boundary conditions, we obtain from (5)-(7)
AX =B, {9)
where X is a column vector of the unknown coefficients
Xp=Cip, B=({J—1)XM+tn (=1, 3Zn=1,2, ..., M); (10)
A is the matrix of the coefficients with elements
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Fig. 1

Fig. 1. Coordinates for defining the diffuse angular co-
efficient,

Fig. 2. .Geometric characteristics of cavity: 1-3) sur-
face numbers.
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Fig. 3. Effective absorption coefficient of a cavity as a function of: a)
angle of faper; b) height; c) radius of opening; d) emissivity of walls:
1) parallel radiation; 2) diffuse radiation.

B is a column vector with the following elements:
be=—2(1—2) [ | ()" KipdAidAy, e=(i— 1) X M+ m

A4,

(i=1,2 3 m=1,2, ..., M).

(13)

The system of linear algebraic equations (9) was solved numerically by computer. All the surface inte-
grals appearing in Eqgs. (2), (11), (12), and (13) were calculated by successive applications of Gauss's formula
[4] with 7, 6, 5, and 4 nodal points, respectively. With this integration scheme Qpef was evaluated with an error
of no more than 20% for M = 3, which corresponds to a relative error Aggff < 2%, for geff=0.9. A further in-
crease in the number of terms in expansion (6) does not lead to a significant increase in accuracy. The accuracy
of the calculation can be increased to any specified value by using Gauss's formula with a larger number of
nodal points, or by employing other more accurate integration schemes. It should be noted, however, that this
leads to a sharp increase in computation time. For example, doubling the number of nodal points leads to a 16-
fold increase in machine time. On the other hand, with an increase in &gy the accuracy of its calculation is
sharply increased as the result of the small role played by Qpef in the overall heat balance [cf. Eq. (1)], and
therefore the accuracy achieved is quite sufficient for practical purposes. The calculations were performed for
two limiting cases: 1) the opening of the cavity radiates diffusely; 2) the radiation enters the cavity parallel to
the axis of symmetry. In all the calculations the cavity parameters were as follows: angle of taper 8= 1.571
rad; height H = 2.0, radius R = 1.0 (scale of linear dimensions); radius of opening Ry =1.0; emissivity ofwalls
£=0.5.
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The results of the calculations for cavities of various configurations are shown in Fig. 3. It is clear
from the figures that the effective absorption coefficient of the cavity is higher for parallel than for diffuse
radiation, except for a cylindrical cavity with H < 2.0. With increasing depth of the cavity, or a decrease inthe
angle of taper, geff approaches a certain limiting value asymptotically (geff= 1 for parallel radiation, and egpp=
0.943 for diffuse radiation). Therefore, increasing H beyond 4.0 or decreasing 8 below 0.5 for diffuse radiation
increases geff only slightly. The value of goff is more effectively increased by increasing the emissivity of the
cavity walls and decreasing the radius of the cavity opening. For parallel radiation decreasing the angle of
taper 6 below 0.5 is also effective in increasing gqff. By choosing optimum values of all four parameters it is
possible to produce a calorimeter for thermal radiation with characteristics closely approaching those of a
black body.

NOTATION

6, angle of taper of cavity; H, height of cavity; R, radius; R, radius of opening of cavity; ¢, emissivity
of cavity walls; geff, effective emissivity of cavity; Qjp, incident heat; Qpes, reflected heat; A, reflection co-
efficient of cavity walls.
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SOME FEATURES OF THE THERMALLY CONCENTRATED
CONVECTIVE MOTION OF A HARDENING BINARY
MELT AND THE IMPURITY DISTRIBUTION

P. F. Zavgorodnii UDC 621.746.7.001

Some features of the thermally concentrated convective motion of a binary melt, hardening in
a closed rectangular region with movable boundaries, and the impurity distribution are inves-
tigated numerically.

It was shown in [1] that the impurity distribution in the hardening part of a crystallizing fixed melt is
mainly determined by the nature of the change in the impurity concentration at the boundary between the hard
and liquid phases. It was established in [2] that convective mixing of the liquid nucleus due to its temperature
nonuniformity has a considerable effect on the nature.of the impurity distribution at the phase-transition bound-
ary and, consequently, on the impurity distribution in the hardening part of the crystallizing melt.

However, some features of the hardening of a binary melt were ignored in [1, 2]. Thus, when a binary
melt hardens a concentrational nonuniformity develops in the liquid nucleus together with a temperature non-
uniformity, due to the difference in the solubility of the impurity in the solid and liquid phases. The result of
the combined action of the temperature and concentration nonuniformities will be the occurrence and develop-
ment of a thermally concentrated gravitational convective motion in the ligquid nucleus of the hardening alloy,
the features of which should also manifest themselves in the nature of the impurity distribution.

Consider a rectangular region filled with melt with initial temperature T;>Tyg and an initial impurity con-
tent ¢y, with relative dimensions 7, = L,/x,, I = Ly/%,. The region in which the melt exists is situated in space
such that 0= x;= L;, 0= x,= L,, and the direction of the acceleration due to gravity determines the positive di-
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